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In the mid-1980s Polyakov [1] suggested that “fine structure”could be added to string dynamics
by including an extrinsic curvature term in the world sheet action.

A =

∫
M2

(
T + S KαβK

αβ
)√

det gαβ d
2x

where T is the tension, gαβ is the induced metric, S is the coeffi cient of the term that “stiffens”the
string, i.e. adds “rigidity”to the world sheet, and where

Kαβ = −n̂ · ∂2−→r
∂xα∂xβ

is the second form that encodes the extrinsic curvature of the world-sheet. In this last expression,
−→r is a point on the world-sheet and n̂ is a local unit normal to the sheet. The local dynamics (i.e.
equations of motion) of the string are modified significantly by this rigidity. In collaboration with
Ghassan Ghandour, Charles Thorn, and Cosmas Zachos, I studied the interesting effects this would
have on Regge trajectories [2], but that is not the subject of this talk.
Soon after studying the modified Regge trajectories, I went on sabbatical in the fall of 1986, to

visit the ITP at Stony Brook. It occurred to me while there that perhaps Polyakov’s rigidity term
could be obtained just as it is in structural engineering by distributing material transverse to the
world sheet. I remind you that this is how linear beams are stiffened to resist bending.

1Talk given 12 May 2017 at Fontbonne University.
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But a transverse thickening of the string world-sheet would just turn it into a membrane world-
volume. So I spent some time thinking about membranes, supermembranes, and all that. I gave
several talks about my work, including a weekly lecture course at Yale in the first half of 1987, and
I wrote a couple of papers on the subject [3]. The last of these was based on a lecture I gave at a
conference in Copenhagen during the fall of 1987 while I was a visiting scientist at CERN.
Unfortunately, my original idea to stiffen the world-sheet did not work. Here’s why. It takes

only a simple calculation to understand what is going on. For visualization purposes, I work in
Euclidean space.
Consider a spherical world-sheet thickened to become a world-volume, namely, the volume be-

tween two concentric spheres of radii r − ε and r + ε, shown here in cross-section.2

2This simple calculation can be found in the physics literature [4]. I thank Eduardo Guendelman for bringing
this paper to my attention.
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The volume of the region between the concentric orange spheres is

V =
4π

3

(
(r + ε)3 − (r − ε)3

)
= 4πr2 × 2ε

(
1 +

ε2

3r2

)
which may be written in a suggestive way as

V = 4πr2
∫ ε

−ε
det

(
1 + y/r 0

0 1 + y/r

)
dy

So, thinking of this as the world-volume of a membrane with surface tension T2, the membrane
action would be

A2 = T2V = 4πr2 × 2εT2

(
1 +

ε2

3r2

)
In fact this is just the modified action of a string, whose world-sheet is the sphere of radius r with
effective tension

T = 2εT2

and which includes a curvature term given by

C =
Tε2

3r2

At first glance, this would seem to be the Polyakov action with S ∝ Tε2, so did this simple thickening
of the world-sheet actually do the job to induce rigidity?
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Well, no. Close perhaps, but no cigar! This curvature term actually involves the intrinsic
scalar curvature

R = (K α
α )2 −KαβK

αβ

and not just KαβK
αβ. Viewed as a modified string action, the integral of the intrinsic scalar

curvature over the world-sheet would give the topological Euler characteristic, and would not modify
the local dynamics of the string.
To confirm this, instead of a sphere consider a right circular cylinder of length L and radius

r. As a surface, this has no intrinsic curvature, i.e. R = 0, since one of the radii of curvature is
infinite, although it does have extrinsic curvature KαβK

αβ = 1/r2. Repeating the previous simple
calculation for concentric cylinders now gives a volume between the cylinders of

V = π
(
(r + ε)2 − (r − ε)2

)
L

= 2πrL× 2ε

= 2πrL

∫ ε

−ε
det

(
1 + y/r 0

0 1 + 0

)
dy

Thus the action for this membrane world-volume would be

A2 = T2V = 2πrL× 2εT2

(
1 +

0

r2

)
Viewed as a string with a cylindrical world-sheet, this again has an effective tension T = 2εT2, but
now there is no induced curvature term.
I considered higher dimensional generalizations, but the story was always the same, when com-

puted as above: No induced Polyakov curvature term. Only intrinsic curvature terms are obtained.
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But later on, Ulf Lindstrom rose to the challenge [5] and pointed out how Polyakov’s extrinsic
curvature term could be obtained by embedding the membrane in an extra spatial dimension, and
then taking a limit where both the size of the extra dimension and the thickness of the membrane
world-volume simultaneously went to zero. The calculation above is not applicable in that case,
for reasons that I will indicate below (if they are not already obvious). I have not checked Ulf’s
calculation, but I have no reason to doubt it. While there was a bit of regret on my part for not
having done the calculation that Ulf did, I took solace in the fact that he gave me some credit for
the essential idea. As he said:

Although, it would have been even more comforting had he cited one of my published papers on
the subject.
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Anyway, how does it go in higher dimensions? If you embed a curved n dimensional submanifold
into a higher N dimensional Euclidean space then for a “tubular”embedding, analogous to what I
did above for concentric spheres and cylinders, the volume element in the full space is given by

dNX =
√

det gαβ d
nx det

(
1 +

N−n∑
a=1

ya K(a)
)

dN−ny

where gαβ, for α, β = 1, · · · , n, is the metric on the submanifold, −→y are points in the N − n
dimensional ambient space surrounding the submanifold, and

K(a)αβ = −gαγ n̂(a) · ∂2−→r
∂xγ∂xβ

Here −→r is a point in the submanifold, and n̂(a) for a = 1, · · · , N − n are all the locally orthogonal
unit normals to the submanifold. This result was obtained by Weyl, although it is just elementary
calculus on manifolds. It is known as the tube volume formula. Weyl went farther to point out
that integrating the −→y over an isotropic ambient space gives only combinations of the 2nd form
matrix that can be expressed in terms of intrinsic curvatures. All this mathematics is discussed in
books, e.g. [6]. It has also been discussed in the physics literature [7]3, most recently as a scheme
to induce Einstein gravity on four-dimensional spacetime [8], but always following the same logic
that I described above for strings and membranes.

3I thank Ricardo Troncoso for pointing out this paper.
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For simplicity, consider just N = n+ 1, as I did in the string/membrane case. Then in general
the effective volume measure on the submanifold for a tubular embedding is√

det gαβ d
nx

∫ ε

−ε
ρ (−→r , y) det (1 + y Kn×n) dy

where ρ (−→r , y) describes a suitable distribution in the ambient space at each submanifold point, −→r .
Previously, for the string/membrane case, I used constant ρ. But if God were a structural engineer
(with a gambling problem?) he might have been enticed by something more like the following, with
the submanifold at the center of the “web”4 and with y indicating the vertical position, say.

4That’s right, we might have been living on the web all along, well before the internet was invented.
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In any case, if you take ρ to be an even function of y, then the y integration produces only
intrinsic curvature combinations. Suppressing the −→r dependence for convenience,∫ ε

−ε
ρeven (y) det (1 + y Kn×n) dy =

∫ ε

−ε
ρeven (y) +

1

2
R

∫ ε

−ε
y2ρeven (y) dy + · · ·

This follows most easily from an eigenvalue expansion of the determinant.

det (1 + y Kn×n) = 1 + y

(
n∑
i=1

κi

)
+ y2

 n∑
i,j=1
j>i

κiκj

+ · · ·+ yn
n∏
i=1

κi

where in diagonal form, at each submanifold point,

Kn×n =


κ1 (−→r )

κ2 (−→r )
. . .

κn (−→r )


It is well-known [9] that the even terms in the eigenvalue expansion of the above determinant can
be expressed in terms of intrinsic curvature polynomials.
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Meanwhile, back in physics ...

Obviously, the Weyl formula is not reliable, and probably breaks down, when y ≈ min (1/κ),
since the volume measure is required to be positive definite. This is the mathematical nicety that
allowed Ulf Lindstrom to obtain a Polyakov term, I believe.

The leading term,
∫ ε
−ε ρ (y) dy, would represent an effective cosmological “constant”Λ – actually

constant only if there is no −→r dependence in ρ.

The second moment, 1
2
R
∫ ε
−ε y

2ρ (y) dy, is effectively the Einstein-Hilbert density, where the
integral over y gives the Newton/Einstein “constant”– again strictly constant only if there is no
−→r dependence in ρ. Note that for positive definite ρ the Λ and R terms must have the same sign.
(Wikipedia says they do not, in the real world, but one has to be careful about conventions.) All
the other even terms in the expansion must also have the same sign, unless of course ρ flips sign for
some values of y.

In principle, some −→r dependence in ρ (−→r , y) could account for the anomalous galaxy and cluster
rotation curves that are cited as evidence for dark matter. But so far, I have not been able to
carefully check the numbers.

From the numerical value of the Einstein constant and the present experimental value of Λ, one
estimates that the “flange depth”is approximately the size of the observable universe.5 Oh Lord!

Finally, if you want a technical problem to investigate, I have not yet found in the literature
the extension of Weyl’s tube formula to superspace. Of course, the replacement det → sdet is a
no-brainer, but the correct replacement of K in the above formulas is more challenging. The result
given in my paper with Peter van Nieuwenhuizen [3] seems to be the correct one, even if it leads to
a supergravity action of the form proposed by Arnowit and Nath [10], rather than directly to the
forms found by Ferrara, Freedman, and van Nieuwenhuizen [11], or by Deser and Zumino [12].

5As noted by David Fairlie, this brings to mind Mach’s principle.
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Thank you for your attention, and the opportunity to visit Fontbonne University. This research
was supported in part by a University of Miami Cooper Fellowship and by an FQXi mini-grant.
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