
Massive Dual Gravity Revisited

Thom∗Curtright
University of Miami

Talk at Chapman University, 11 October 2019

Abstract

A highly speculative model of massive “gravity”as a pure spin 2
field, has a description which is “dual” to the usual one in terms of
a spacetime metric tensor. In the dual description, for weak fields,
the metric emerges as the field strength of an underlying fundamental
field. More generally, if the gravitational field is not weak, the met-
ric emerges as a nonlinear mixture involving the energy momentum
tensor.

∗A pre-emptive answer to the question: “Why abbreviate Thomas as Thom?”

For me it has nothing to do with Thom McAn. But it does go back to my youth. In
the DC universe Thom Kallor is Star Boy, a member of the Legion of Super-Heroes living
in the next millennium. He was born to astronomer parents on an observation satellite
orbiting the planet Xanthu.

Star Boy is able to increase the mass of an object, but only temporarily. It seems appro-
priate to mention that here, given the subject of this talk.
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Here is the basic mechanism behind massive duality.

Consider a scalar field φ and antisymmetric tensor Vλµν in 4D.
Let

L [φ, V ] = −1

2
m2φ2 +

1

6
mεκλµνφ ∂κVλµν +

1

12
m2VλµνV

λµν

Classically, the field equations are

mφ =
1

6
εκλµν∂κVλµν , mV λµν = εκλµν∂κφ

Note the interchange: field ↔ field strength.

Also note that ∂λV λµν = 0 for m 6= 0.
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It follows that

m2φ = −1

6
εκλµνελµνρ ∂κ∂

ρφ = −1

6
δκλµνρλµν ∂κ∂

ρφ = −�φ

m2V λµν =
1

6
εκλµνεαβγδ ∂κ∂

αV βγδ = −1

6
δκλµναβγδ ∂κ∂

αV βγδ = −�V λµν

So, both φ and V are fields of mass m.(
�+m2

)
φ = 0 ,

(
�+m2

)
V λµν = 0

Either field describes a massive, spinless particle.
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Alternatively, in the path integral, complete the square and
integrate out φ to find a massive V theory:

L [V ] =
1

36

(
εκλµν∂κVλµν

)2
+

1

12
m2VλµνV

λµν

Or integrate out Vλµν to find a massive φ theory:

L [φ] =
1

2
(∂κφ) (∂κφ)− 1

2
m2φ2

Either way you obtain again a description of a massive, spinless field.

Let’s move on to spin 2.
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For a symmetric tensor field, hµν = hνµ, recall that

(�+m2)hµν = κ Θµν for Θµν = Θνµ & ∂µΘµν = 0

produces spin 2 ⊕ spin 0 radiation if Θ α
α 6= 0 but

(�+m2)hµν = κ Θµν +
1

3m2
κ
(
ηµν�− ∂µ∂ν

)
Θ

produces only spin 2 radiation even if Θ α
α 6= 0

For the 1st option above, see Freund, Maheshwari, & Schonberg (1968)
while for the 2nd option, see Ogievetski and Polubarinov (1965)
or more recently, de Rham, Gabadadze, and Tolley (2011).

This talk concerns the dual form of the OP-dRGT model,
first proposed by TLC & PGOF in 1980 without reference to OP.
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Massive gravity

– as usually presented [1] – starting from the massless theory in the weak
field limit.

In four-dimensional spacetime, where

gµν = ηµν + hµν , h = h µ
µ , ηµν = diag (+1,−1,−1,−1) ,

for weak fields with ‖hµν‖ � 1 Einstein’s equations become

�hµν−∂µ∂αhαν−∂ν∂αhαµ+ηµν∂
α∂βhαβ−ηµν�h+∂µ∂νh = κΘµν +O

(
h2αβ
)

where � = 1
c2
∂2t −∇2 is the d’Alembertian, and Θµν represents the energy-

momentum for everything else in the world. The LHS is manifestly diver-
genceless.

6



That is to say, in the linear approximation,

Rµν =
1

2
(�hµν − ∂µ∂αhαν − ∂ν∂αhαµ + ∂µ∂νh) , R = �h− ∂α∂βhαβ

so that Einstein’s equations,

Rµν −
1

2
gµνR =

1

2
κ Θµν .

with κ = 16πG/c4, then lead to the previous linearized field equations.

Those field equations are slightly simplified if hµν is replaced by the “trace-
reversed”field ~µν .1

~µν = hµν −
1

2
ηµνh , hµν = ~µν −

1

2
ηµν~ , h = −~ .

The result is

�~µν − ∂µ∂α~αν − ∂ν∂α~αµ + ηµν∂
α∂β~αβ = κ Θµν

1My apologies to Planck, but this notation was just too good to resist.
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Even better, if the “harmonic gauge condition”is chosen,

0 = ∂α~αµ = ∂αhαµ −
1

2
∂µh

then the field equations reduce to something a good undergraduate can solve,
given Θµν .

�~µν = κ Θµν

In these gauges the Ricci and scalar curvatures, and the Einstein tensor, are
just

Rµν =
1

2
�hµν , R =

1

2
�h , Gµν = Rµν −

1

2
gµνR =

1

2
�hµν −

1

4
ηµν�h
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In 1939 Markus Fierz and Wolfgang Pauli determined the “correct”mass
term for the theory. They added

1

4
m2
(
h2 − hµνhµν

)
to the Lagrangian, hence m2

(
hµν − ηµνh

)
to the previous linearized field

equations.2

Adding the most general mass term, namely,

m2hµν − f m2ηµνh

for constant f , the linearized Einstein equations become(
�+m2

)
hµν−∂µ∂αhαν−∂ν∂αhαµ+ηµν∂

α∂βhαβ−ηµν
(
�+ f m2

)
h+∂µ∂νh = κΘµν+O

(
h2αβ
)

2I am told that data from gravitational wave detections require mc2 < 1×10−28 MeV,
to be compared to results from weak gravitational lensing, i.e. mc2 < 1×10−37 MeV, and
to more traditional electromagnetic experiments which give limits for the photon mass,
i.e. mγc

2 < 1×10−24 MeV. But the bounds on m are not enough to rule out a Compton
wave length for cosmological distance scales, since mc2 ∼ 1× 10−39 MeV for the Hubble
distance.
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Under the assumption that ∂µΘµν = 0, taking the divergence of these
field equations gives(
�+m2

)
∂µhµν−�∂αhαν−∂ν∂α∂µhαµ+∂ν∂

α∂βhαβ−∂ν
(
�+ f m2

)
h+�∂νh = 0+O

(
h2αβ
)

That is to say, to the order considered, we obtain the condition

m2 (∂µhµν − f ∂νh) = 0 +O
(
h2αβ
)

Note this is not the harmonic gauge condition for the Fierz-Pauli choice
f = 1.
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On the other hand, taking the trace of the field equations now gives

−
(
2�+ (4f − 1)m2

)
h+ 2∂α∂βhαβ = κ Θ +O

(
h2αβ
)

where Θ = Θ µ
µ . When combined with the previous condition, this becomes

2 (1− f)�h+ (1− 4f)m2h = κ Θ +O
(
h2αβ
)

and the trace h does not drop out, in general. Therefore, to the order
considered, for generic values of the parameter f the trace h decouples if and
only if the energy-momentum tensor is traceless.

But more importantly, instead of f = 1 as in the Fierz-Pauli combination,
any other choice for this relative coeffi cient in the mass terms will result
in independent propagation of the trace h. That is to say, a sixth degree
of freedom can exist as radiation, in addition to the five expected for pure
spin 2, and that extra scalar degree of freedom can be produced by energy-
momentum if Θ 6= 0.
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Massive gravity reconsidered

– from a dual point of view [2] – rather than the usual one.

Instead of the symmetric rank two tensor, gµν = gνµ, in four spacetime
dimensions there is another way to describe a massive spin 2 particle using
a rank three tensor field, T[λµ]ν . The tensor must have the symmetries3

T[λµ]ν = −T[µλ]ν , T[λµ]ν + T[µν]λ + T[νλ]µ = 0

corresponding to those of the Young diagram .

3These are the same symmetries as those of the Lanczos tensor, but in general, T[λµ]ν
is not the same as Cornelius’construction.
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That is to say, spin
−→
2 appears not only in

−→
1 ⊗−→1 =

−→
2 ⊕−→1 ⊕−→0

in somewhat archaic notation, but also in

−→
1 ⊗−→1 ⊗−→1 =

−→
3 ⊕ 2

(−→
2
)
⊕ 3

(−→
1
)
⊕−→0

Or even better(−→
1 ⊗−→1

)
symmetric

=
−→
2 ⊕−→0 ,

(−→
1 ⊗−→1

)
antisymmetric

=
−→
1

(−→
1 ⊗−→1 ⊗−→1

)
symmetric

=
−→
3 ⊕−→1 ,

(−→
1 ⊗−→1 ⊗−→1

)
antisymmetric

=
−→
0

(−→
1 ⊗−→1 ⊗−→1

)
mixed as above

=
−→
2 ⊕−→1

A perspicacious student will have noted these are just branching rules for
su (3) ⊃ so (3) .
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In this case the “free”field equations follow from the Lagrangian

L = F[λµν]ρ F
[λµν]ρ − 3F[µν] F

[µν] − 3m2
(
T[λµ]νT

[λµ]ν − 2TλT
λ
)

where the trace of the field is Tλ = gµνT[λµ]ν , and the field strength and its
trace are

F[λµν]ρ ≡ ∂λT[µν]ρ + ∂µT[νλ]ρ + ∂νT[λµ]ρ

F[µν] ≡ gλρF[λµν]ρ ,

The actual field equation resulting from the action for L is somewhat com-
plicated, with six terms, as was the case for hµν .
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But in flat spacetime it all boils down to equations in the standard Fierz-Pauli
form. The tensor obeys the Klein-Gordon equation(

�+m2
)
T[λµ]ν = 0

along with the secondary conditions

Tλ = 0 , ∂µT[µν]ρ = 0 = ∂ρT[µν]ρ

provided the mass is non-zero.

As a consequence, in 4D spacetime the free field describes the propagation
of massive modes with the five expected helicities Jz/~ = ±2, ±1, and 0.

But in 4D spacetime, perhaps surprisingly, if m = 0 the above Lagrangian
describes no propagating modes!

This point warrants a slight digression.
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At least psychologically, there is a hint that this might be the case, based on
the Euler density.

There is another way to write the field strength bilinear in the Lagrangian,
namely,

F[λµν]ρ F
[λµν]ρ − 3F[µν] F

[µν] =
3

2

(
R[λµ][νρ]R

[λµ][νρ] − 4RλνR
λν +R2

)
where R[λµ][νρ] and its traces are given by

R[λµ][νρ] = ∂νT[λµ]ρ − ∂ρT[λµ]ν

Rλν = gµρR[λµ][νρ] , R = gλνRλν

Moreover, in 4D spacetime

R[λµ][νρ]R
[λµ][νρ] − 4RλνR

λν +R2 = −1

4
ελµγδ εαβνρ R[λµ][νρ] R[αβ][γδ]
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Now, if R[λµ][νρ] were the Riemann curvature, this would be the Euler density
– a total divergence – i.e. a topological term in the action, and therefore
it would not contribute to the field equations nor to mode propagation.

But this hint is only psychological – it is actually not a fact. By definition,
unlike the Riemann curvature,

R[λµ][νρ] 6= R[νρ][λµ]

So the field strength terms in L are not a total divergence, and therefore
they do contribute to the field equations.

To see that no modes are propagated for the massless field in 4D requires a
careful examination of all the gauge invariances of the field strength terms
in L.
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The action for L with m = 0 is invariant under gauge transformations on
T[λµ]ν given by [2]

δT[λµ]ν = ∂λSµν − ∂µSλν + ∂λAµν − ∂µAλν + 2∂νAµλ

where Sµν is any local, differentiable, symmetric tensor field, and Aµν is any
local, differentiable, antisymmetric tensor field.

Now, the m = 0 action for L is actually invariant under these gauge trans-
formations for any number of spacetime dimensions, and in general for more
than 4D there will be propagating modes even for m = 0. However, in the
special case of 4D spacetime, it so happens that these gauge transformations
eliminate all propagating modes.

That is to say, in 4D the only solutions of the massless free field equations
for T[λµ]ν are pure gauge configurations.

Let’s get back to the massive case.
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The number of T[λµ]ν propagating modes in 4D spacetime jumps from none,
for m = 0, to five for m 6= 0. At least that is the case for the free theory.
But what about coupling to other fields, or self-coupling of T[λµ]ν to itself?

Some time ago [3] Peter Freund and I proposed the following field equation.(
�+m2

)
T[λµ]ν = κ

(
2ελµαβ∂

αΘβ
ν + ενµαβ∂

αΘβ
λ − ενλαβ∂αΘβ

µ

)
where once again Θµν is an energy-momentum tensor. Several features of
this field equation warrant comments.
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• First, the RHS is conserved w.r.t. all three indices if ∂βΘαβ = 0. Hence
the divergences of T[λµ]ν decouple (i.e. are free fields) and may be consistently
set to zero for this interaction.

• Second, the RHS is traceless w.r.t. µ = ν if Θαβ = Θβα. (NB It is not
necessary that Θαβ be traceless.) Hence the trace of T[λµ]ν decouples and
may also be consistently set to zero for this interaction.

Therefore the proposed field equation avoids the spurious trace degree of
freedom problem that plagued massive hµν .
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• Third, the RHS is a total divergence.

This means under “normal”conditions, whereΘαβ (x) falls to zero suffi ciently
rapidly as xµ approaches infinity on some space-like hypersurface, the source
on the RHS is a chargeless source for most (but not all?) components of
T[λµ]ν . (See the fourth point to follow.)

Is this related to Mach’s principle? Or holography?

• Fourth, the proposed field equation implies T[λµ]ν has negative parity.

How might that be reconciled with the expected positive parity of gravity?

In principle, this last question is easily answered in 4D spacetime.
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It is straightforward to construct a positive parity, rank two tensor field from
the field strength for T[λµ]ν , namely,

Kµν = ε αβγ
µ F[αβγ]ν

This illustrates a common feature in duality theory, where the field of one
variable is the field strength of another.

But more importantly for the situation at hand,

K µ
µ ≡ 0 , ∂µKµν ≡ 0

Actually, given the field equation that Peter Freund and I proposed (i.e. “on-
shell”) one can show for this definition ofKµν only the components symmetric
under µ ↔ ν couple locally to energy and momentum. The antisymmetric
part decouples, i.e. Kµν −Kνµ is a free field.
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Given the proposed field equation for T[λµ]ν the on-shell equation for Kµν is(
�+m2

)
Kµν = 12κ�Θµν + 4κ

(
∂µ∂ν − ηµν�

)
Θ

Note the RHS is symmetric and manifestly traceless in 4D, as well as con-
served. So Hµν = Kµν +Kνµ couples to Θµν but Kµν −Kνµ does not.

Also note that static energy-momentum sources do produce K00.(
∇2 −m2

)
K00 = 12κ∇2Θ00 − 4κ∇2Θ

For either traceless Θµν or stress-free matter, this is similar to conventional
massive gravity, but with K00 ∝ ∇2h00.
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There is a more palatable way to write the field equation for Kµν through
use of a highly nonlinear field redefinition.

Let
Hµν =

−1

12m2
(Kµν − 12κΘµν)

Then (
�+m2

)
Hµν = κΘµν +

κ

3m2

(
ηµν�− ∂µ∂ν

)
Θ

This shows that it is consistent to have

H = H µ
µ =

κ

m2
Θ

since (�+m2)
(
H − κ

m2 Θ
)

= 0.
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More importantly, the equation for Hµν is just the OP equation for hµν , i.e.(
�+m2

)
hµν = κ Θµν +

κ

3m2

(
ηµν�− ∂µ∂ν

)
Θ

So the T[λµ]ν theory is the exact massive dual of the OP model, with the
expected realization of one field as the field strength of the other, albeit with
some nonlinear embellishments in this realization due to the interaction.
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• Finally, then, what is the interaction Lagrangian that leads to the proposed
field equations for T[λµ]ν if Θαβ is due to T[λµ]ν itself?

So far the requisite Lint is only known to first order in κ [5, 6].

It helps to first write the field equation more compactly as(
�+m2

)
T[λµ]ν = κPλµν,αβγ∂

αΘβγ ,

where we have defined a symmetrizing tensor

Pλµν,αβγ = 2ελµαβηνγ + ενµαβηλγ − ενλαβηµγ .
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Then the lowest order interaction is

Lint =
1

36
κ K β

α K
γ
β K

α
γ

+κ T[λµ]νP
λµν,αβ

γ ∂α
((
�+m2

) (
T[βρ]σT

[γρ]σ
)
− ∂γ∂ρ

(
T [ρσ]τT[βσ]τ

))
,

In order for this to give the sought-for field equation, the energy-momentum
tensor needs an “improvement.”

Θ γ
β = θ γ

β − 36ϑ γ
β , ∂βϑ γ

β ≡ 0 ,

ϑ γ
β ≡ �

(
T[βb]cT

[γb]c
)
− ∂β∂a

(
T[ab]cT

[γb]c
)
− ∂γ∂a

(
T [ab]cT[βb]c

)
+ δ γ

β ∂
d∂a
(
T [ab]cT[db]c

)
.
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Explicitly, in N spacetime dimensions (not just N = 4) the on-shell free-field
energy-momentum tensor is given by

θ ν
µ = K λ

µ K ν
λ +

(−1)N−1m2

(N − 3)!
T[µα2···αN−2]λT

[να2···αN−2]λ

−1

2
δ ν
µ

(
KαβKβα −

(−1)N m2

(N − 2)!
T[α1···αN−2]γT

[α1···αN−2]γ

)
,

where K ν
µ ≡ 1

(N−1)! K
ν
µ , and the improved tensor is given by

Θ ν
µ = θ ν

µ +
(−1)N−1

(N − 3)!
ϑ ν
µ ,

ϑ ν
µ ≡ �

(
T[µα2···αN−2]cT

[να2···αN−2]c
)

+ δ ν
µ ∂a∂

b
(
T [aα2···αN−2]cT[bα2···αN−2]c

)
−∂µ∂b

(
T[bα2···αN−2]cT

[να2···αN−2]c
)
− ∂ν∂b

(
T [bα2···αN−2]cT[µα2···αN−2]c

)
.

But what is Lint to all orders in κ?

28



I do not yet know the answer to this last question. But I suspect it will
involve

det
(
1 + κK β

α

)
= 1−1

2
κ2K µ

λ K
λ
µ +

1

3
κ3K µ

λ K
ν
µ K

λ
ν +

1

8
κ4
((
K µ
λ K

λ
µ

)2 − 2K µ
λ K

ν
µ K

ρ
ν K

λ
ρ

)
Note the κ2 term here is a very compact way to express the field strength
bilinear in the T[λµ]ν Lagrangian.

1

6
K µ
λ K

λ
µ = −F[λµν]ρ F [λµν]ρ + 3F[µν] F

[µν]

Under a gauge transformation Sµν gauge parameters drop out of δF[λµν]ρ, so

δKµν = −2∂νVµ , Vµ ≡ εµαβγ
(
∂αAβγ + ∂βAγα + ∂γAαβ

)
Invariance of the free field action then follows immediately upon integration
by parts, discarding any surface contributions.

δ

∫
K ν
µ K

µ
ν d

4x = −4

∫
(∂νVµ)K µ

ν d
4x =

i.b.p.
4

∫
Vµ (∂νK µ

ν ) d4x = 0
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In any case, with my student Hassan Alshal, I have made some progress
towards the answer to this last question, and to similar problems in higher
dimensional spacetimes. In particular, we have developed the theory for a
scalar analogue of the T[λµ]ν model.
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The analogous scalar problem

In 4D a massive scalar Φ is dual to a totally antisymmetric tensor field

Vαβγ = εαβγµ∂
µΦ

whose totally antisymmetric gauge invariant field strength is

Fλµνρ = ∂λVµνρ − ∂µVνρλ + ∂νVρλµ − ∂ρVλµν

and whose free field Lagrangian is

L = − 1

48
Fλµνρ F

λµνρ +
1

12
m2VλµνV

λµν

As was the case for T[λµ]ν , when m = 0 the free field theory governed by L
has no propagating modes, but when m 6= 0 the number of modes jumps up
to one in this case – corresponding to Φ.
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The model analogous to the T[λµ]ν theory proposed above has field equations(
�+m2

)
Vαβγ = κεαβγµ∂

µΘ

∂αVαβγ = 0

where Θ = Θ ν
ν is the trace of an energy-momentum tensor.

Peter Freund and I also proposed this model some time ago [3], but we did
not exhibit a Lagrangian which led to this theory for a self-coupled Vαβγ, i.e.
when Θαβ is an energy-momentum tensor for Vαβγ itself.

When I was invited to contribute to a volume honoring Peter, who died in
March 2018, I decided to revisit this problem and find an L for the self-
coupled theory. I succeeded [4].
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The result is

L = −1

2
m2u+

1

2

(
v −m2κu

)2
+

1

κ2
F
(
κ
(
v −m2κu

))
u ≡ −1

6
VλµνV

λµν , v ≡ 1

24
ελµνρFλµνρ

where

F (w) = −1

2
w +

1

4
w
√

1 + 4w2 +
1

8
ln
(

2w +
√

1 + 4w2
)

≡ 1

3
w3 3F2

(
1,

1

2
,
3

2
; 2,

5

2
;−4w2

)
=

1

3
w3 − 1

5
w5 +

2

7
w7 − 5

9
w9 +

14

11
w11 − 42

13
w13 +

44

5
w15 +O

(
w17
)
.
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My student and I generalized this result [6] to any number of spacetime di-
mensions, N . In that case a massive scalar is dual to a totally antisymmetric
tensor of rank N − 1,

Vα1···αN−1 = εα1···αN∂
αNΦ

with a gauge invariant field strength that is totally antisymmetric of rank N .

The field equations are now(
�+m2

)
Vα1···αN−1 = κεα1···αN∂

αNΘ

∂α1Vα1···αN−1 = 0

Again there is a closed-form expression for the Lagrangian that gives this
interacting theory when Θ depends on the field Vα1···αN−1 itself.
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To obtain L in this case, it is necessary to find the root of the trinomial
equation

X
N

N−2 = 1 + zX

that goes to 1 as z → 0. That is to say

XN − (1 + zX)N−2 = 0

At first glance this looks very diffi cult for N 6= 4, but in fact there is a
closed-form expression for the root [7, 8]. As a series it is

X (z) =
N − 2

N

∞∑
m=0

zm

m!

Γ
(
N−2
N

(1 +m)
)

Γ
(
2− 2

N
(1 +m)

)
This series is a special case of a generalization for the confluent hypergeo-
metric function 1F1 , as defined by [9]

1F1
(
α
β

;
ρ
σ

; z

)
=

∞∑
m=0

zm

m!

Γ (α + βm)

Γ (ρ+ σm)
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In due course, we hope to find results of this type for the T[λµ]ν field, and its
generalization to N -dimensional spacetimes. If you like to shuffl e indices,
perhaps this is your calling.

Acknowledgement: Thank you for your time, and for the opportunity to
visit Chapman and give this talk.
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