Classical Electromagnetic Theory II

Professor Thomas Curtright

PHY651, Section QH

T,Th 12:15-1:30 room 203; W 3:00-3:50 room 203

Grade = HW + Midterm (Thurs, 11 March, in class ) + Final (Tuesday, 11 May, 2:00-4:30, Physics Library)

Required text: J D
Jackson, Classical Electrodynamics, Third Edition
(Wiley, 1999) [Jackson
errata]

We will cover Chapters 8 - 16,
more or less.

Notes: Lienard
power formula, Thomas
precession, conformal
transformations

Classic papers on
diffraction: Andrews
(experimental!), Bethe,
Morse
and Rubinstein, Smythe,
Stratton
and Chu

HW#1 Jackson 8.2, 8.5,
8.7, 8.9 due Friday 30 January HW#2 Jackson 8.14, 8.17, 9.1 due Friday 13 February HW#3 Jackson 9.14, 9.16, 9.17 due Friday 20 February HW#4 Jackson 9.6, 9.12, and provide the details to obtain Eqn (9.168) from Eqn (9.163), for the case of zero magnetization, due Friday 27 February HW#5 Jackson 6.2, 14.3, 14.2, 14.4, 16.1, 16.2 due Friday 5 March HW#6 Jackson 10.1, 10.8, 10.12, and show the orthogonality of spherical Bessel functions as given here, due Friday 2 April HW#7 Jackson 11.3, 11.5, 11.11, 11.12, 11.17, 11.18, due Friday 16 April HW#8 Jackson 12.1, 12.16, and assuming only a conserved, symmetric, traceless energy-momentum tensor θ _{μν}, construct
all conserved rank 2 tensor currents of the form x^{α} x^{β}
θ_{μν} with suitably chosen contractions of indices, due Friday
30 AprilFinal Exam: Pick it up here, due Tuesday 11 May 4:30 pm. |

You may collaborate on your HW, but
not on
your exams.

However, you must list all
references, collaborations, and other
sources, if any, for your HW solutions.

A O Barut, Electrodynamics and Classical Theory of Fields and Particles (Macmillan, 1964; Dover, 1980).

S C Chapman, Core Electrodynamics (Taylor & Francis, 2000).

R P Feynman, R B Leighton, and M Sands, The Feynman Lectures on Physics, Volume II (Addison-Wesley, 1964).

M A Heald and J B Marion, Classical Electromagnetic Radiation, 3rd edition (Brooks Cole, 1994). [1]

L D Landau and E M Lifshitz, The Classical Theory of Fields, Fourth Revised English Edition.

Course of Theoretical Physics Volume 2 (Pergamon, 1975, 1987, 1997). [1]

L D Landau, E M Lifshitz, and L P Pitaevskii, Electrodynamics of Continuous Media, 2d edition.

Course of Theoretical Physics Volume 8 (Pergamon, 1960, 1984, 1993). [1]

F E Low, Classical Field Theory (Wiley, 1997). [1]

W K H Panofsky and M Phillips, Classical Electricity and Magnetism, 2nd edition (Addison-Wesley, 1962).

E Purcell, Electricity and Magnetism (McGraw-Hill, 1984). [1]

J Schwinger, L L DeRaad, Jr., K A Milton, and Wu-yang Tsai, Classical Electrodynamics (Perseus, 1998). [1]

D E Soper, Classical Field Theory (John Wiley & Sons, 1976). [2]

M Abramowitz and I E Stegun, Handbook of Mathematical Functions,
(National Bureau of Standards, AMS 55, 1964)

G B Arfken and H J Weber, Mathematical
Methods for Physicists, Fifth Edition (Academic Press, 2001).

W H Press, S A Teukolsky, W T Vetterling, and B P Flannery, Numerical
Recipes, (Cambridge University Press, 1992).

H M Schey, Div, Grad, Curl, and All That:
An
Informal Text on Vector Calculus, Third Edition (W.W. Norton,
1997).

[1] Gaussian units; [2] Lorentz units

As in PHY650, the content of the course is given, in summary, by the Lorentz force law and Maxwell's equations, involving the constants:

where

where

An exact expression for the Coulomb constant is:

Maxwell's equations relate the field quantities, the charge density, and the current density at one single point in space, through their time and space derivatives. They contain physical information obtained from Coulomb's, Ampere's, and Faraday's laws, and they have been modified by Maxwell's assumption so as to satisfy the law of continuity of charge. Below are Maxwell's equations and related equations. Bold-face letters represent vectors.

The symbols used in the above equations have the following
meaning.

Symbol |
Meaning |
MKS
units |
Gaussian
units |

magnetic induction | (tesla) | (gauss) | |

velocity of light | (meters per second) | (centimeters per second) | |

electric displacement | (newtons per coulomb) | (dynes per statcoulomb) | |

electric field strength | (newtons per coulomb) | (dynes per statcoulomb) | |

force | (newton) | (dyne) | |

magnetic field intensity | (amperes per meter) | (gauss) | |

current density | (amperes per square meter) | (gauss per meter) | |

magnetization | (amperes per meter) | (gauss) | |

charge | (coulomb) | (statcoulomb) | |

volume charge density | (coulomb per cubic meter) | (statcoulomb per cubic centimeter) | |

velocity | (meters per second) | (centimeters per second) |